The design and synthesis of a quality compound library containing a small number of skeletally diverse scaffolds, whose members rapidly deliver new chemical probes active against multiple phenotypes, is paramount in drug discovery. In this context, an efficient one-pot strategy for the synthesis of a mini library of sp 3 -enriched hexahydropyrido[2′,1′:2,3]imidazo[1,5-a]quinolinium and hexahydrothiazolo[2′,3′:2,3]imidazo[1,5-a]quinolinium architectures, is described. This new one-pot method features a combination of Sc(OTf) 3 -catalyzed [4 + 1]-cycloaddition with aza-Michael addition reactions. The cascade results in a rapid and diastereoselective formation of these scaffolds via desymmetrization of the oxidative dearomatization products of phenols. Phenotypic screening of the mini library against multiple drug-resistant bacteria and a panel of cancer cell lines identified potential antibacterial and anticancer lead drug candidates. Further investigation of the anticancer leads, indicated by their activity as tubulin-polymerization inhibitors, represents a promising approach for cancer therapy.