Recent years have brought a flood of interest in developing compounds that selectively degrade protein targets in cells, as exemplified by PROTACs. Fully realizing the promise of PROTACs to transform chemical biology by delivering degraders of diverse and undruggable protein targets has been impeded, however, by the fact that designing a suitable chemical linker between the functional moieties requires extensive trial and error. Here, we describe a structure-based computational method to predict PROTAC activity. We envision that this approach will allow design and optimization of PROTACs for efficient target degradation, selection of E3 ligases best suited for pairing with a given target protein, and understanding the basis by which PROTACs can exhibit different target selectivity than their component warheads..