This review, complemented by empirical investigations, delves into the intricate world of industrial powders, examining their elastic properties through diverse methodologies. The study critically assesses Young’s modulus (E) across eight different powder samples from various industries, including joint filler, wheat flour, wheat starch, gluten, glass beads, and sericite. Employing a multidisciplinary approach, integrating uniaxial compression methodologies—both single and cyclic—with vibration techniques, has revealed surprising insights. Particularly notable is the relationship between porosity and Young’s modulus, linking loose powders to the compacts generated under compression methods. Depending on the porosity of the powder bed, Young’s modulus can vary from a few MPa (loose powder) to several GPa (tablet), following an exponential trend. The discussion emphasizes the necessity of integrating various techniques, with a specific focus on the consolidation state of the powder bed, to achieve a comprehensive understanding of bulk elasticity. This underscores the need for low-consolidation methodologies that align more closely with powder technologies and unit operations such as conveying, transport, storage, and feeding. In conclusion, the study suggests avenues for further research, highlighting the importance of exploring bulk elastic properties in loose packing conditions, their relation with flowability, alongside the significance of powder conditioning.