Optical fiber vector solitons have potential applications in the field of high-capacity optical fiber communications and have been widely explored in recent years. Here, we theoretically modulate dual-wavelength optical fiber vector solitons in an optical fiber system at a wavelength regime of 1 μm while considering the influence of group velocity dispersion. When the input dual-wavelength optical fiber vector solitons have the same two central wavelengths of 1057 nm and 1063 nm in orthogonal directions, the output modulated optical fiber vector solitons’ pulse shapes and optical spectra will maintain their peak intensities upon the change of the projection angle. When the two orthogonal central wavelengths of the input dual-wavelength optical fiber vector solitons are slightly different (1056 nm and 1062 nm in one polarization direction, 1058 nm and 1064 nm in the other direction), dual-peak pulse shapes appear and are accompanied by different wavelength peak intensities when the propagation distance increases. Our simulation results examine the out-cavity modulation of dual-wavelength optical fiber vector solitons and can be expanded to multi-wavelength optical fiber vector solitons’ modulation.