Numerous inhibitors of cyclin-dependent kinases and glycogen synthase kinase-3 (GSK-3) are being developed in view of their potential applications against cancers and neurodegenerative disorders. Among these, paullones constitute a family of potent and apparently selective cyclin-dependent kinase and GSK-3 inhibitors. However, their actual intracellular targets remain to be identified. To address this issue we have immobilized a paullone, gwennpaullone, on an agarose matrix. Extracts from various cell types and tissues were screened for proteins interacting with this matrix. This approach validated GSK-3␣ and GSK-3 as major intracellular paullone targets and also mitochondrial, but not cytoplasmic, malate dehydrogenase (MDH). Mitochondrial MDH was indeed inhibited by micromolar concentrations of paullones. Mitochondrial MDH was the major paullone-binding protein in the parasitic protozoon Leishmania mexicana, and paullones inhibited growth of the parasite. This simple batchwise affinity chromatography approach constitutes a straightforward method for the identification of intracellular targets of this particular class of novel anti-mitotic compounds. It has revealed an unexpected target, mitochondrial MDH, the inhibition of which may participate in the pharmacological effects of paullones.