Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Predicting attachment styles using AI algorithms remains relatively unexplored in scientific literature. This study addresses this gap by employing EEG data to evaluate the effectiveness of ROCKET-driven features versus classic features, both analyzed using the XGBoost machine learning algorithm, for classifying ‘secure’ or ‘insecure’ attachment styles.Participants, fourth-year engineering students aged 20–35, first completed the ECR-R questionnaire. A subset then underwent EEG sessions while performing the Arrow Flanker Task, receiving success or failure feedback for each trial.Our findings reveal the effectiveness of both feature sets. The dataset with ROCKET-derived features demonstrated an 88.41% True Positive Rate (TPR) in classifying ‘insecure’ attachment styles, compared to the classic features dataset, which achieved a notable TPR as well. Visual representations further support ROCKET-derived features’ proficiency in identifying insecure attachment tendencies, while the classic features exhibited limitations in classification accuracy. Although the ROCKET-derived features exhibited higher TPR, the classic features also presented a substantial predictive ability.In conclusion, this study advances the integration of AI in psychological assessments, emphasizing the significance of feature selection for specific datasets and applications. While both feature sets effectively classified EEG-based attachment styles, the ROCKET-derived features demonstrated a superior performance across multiple metrics, making them the preferred choice for this study.
Predicting attachment styles using AI algorithms remains relatively unexplored in scientific literature. This study addresses this gap by employing EEG data to evaluate the effectiveness of ROCKET-driven features versus classic features, both analyzed using the XGBoost machine learning algorithm, for classifying ‘secure’ or ‘insecure’ attachment styles.Participants, fourth-year engineering students aged 20–35, first completed the ECR-R questionnaire. A subset then underwent EEG sessions while performing the Arrow Flanker Task, receiving success or failure feedback for each trial.Our findings reveal the effectiveness of both feature sets. The dataset with ROCKET-derived features demonstrated an 88.41% True Positive Rate (TPR) in classifying ‘insecure’ attachment styles, compared to the classic features dataset, which achieved a notable TPR as well. Visual representations further support ROCKET-derived features’ proficiency in identifying insecure attachment tendencies, while the classic features exhibited limitations in classification accuracy. Although the ROCKET-derived features exhibited higher TPR, the classic features also presented a substantial predictive ability.In conclusion, this study advances the integration of AI in psychological assessments, emphasizing the significance of feature selection for specific datasets and applications. While both feature sets effectively classified EEG-based attachment styles, the ROCKET-derived features demonstrated a superior performance across multiple metrics, making them the preferred choice for this study.
IntroductionAttachment styles are crucial in human relationships and have been explored through neurophysiological responses and EEG data analysis. This study investigates the potential of EEG data in predicting and differentiating secure and insecure attachment styles, contributing to the understanding of the neural basis of interpersonal dynamics.MethodsWe engaged 27 participants in our study, employing an XGBoost classifier to analyze EEG data across various feature domains, including time-domain, complexity-based, and frequency-based attributes.ResultsThe study found significant differences in the precision of attachment style prediction: a high precision rate of 96.18% for predicting insecure attachment, and a lower precision of 55.34% for secure attachment. Balanced accuracy metrics indicated an overall model accuracy of approximately 84.14%, taking into account dataset imbalances.DiscussionThese results highlight the challenges in using EEG patterns for attachment style prediction due to the complex nature of attachment insecurities. Individuals with heightened perceived insecurity predominantly aligned with the insecure attachment category, suggesting a link to their increased emotional reactivity and sensitivity to social cues. The study underscores the importance of time-domain features in prediction accuracy, followed by complexity-based features, while noting the lesser impact of frequency-based features. Our findings advance the understanding of the neural correlates of attachment and pave the way for future research, including expanding demographic diversity and integrating multimodal data to refine predictive models.
This research explores the integration of the Dry Sensor Interface-24 (DSI-24) EEG headset with a ChatGPT-enabled Furhat robot to monitor cognitive stress in video gaming environments. The DSI-24, a cutting-edge, wireless EEG device, is adept at rapidly capturing brainwave activity, making it particularly suitable for dynamic settings such as gaming. Our study leverages this technology to detect cognitive stress indicators in players by analyzing EEG data. The collected data are then interfaced with a ChatGPT-powered Furhat robot, which performs dual roles: guiding players through the data collection process and prompting breaks when elevated stress levels are detected. The core of our methodology is the real-time processing of EEG signals to determine players’ focus levels, using a mental focusing feature extracted from the EEG data. The work presented here discusses how technology, data analysis methods and their combined effects can improve player satisfaction and enhance gaming experiences. It also explores the obstacles and future possibilities of using EEG for monitoring video gaming environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.