Purpose Protein hydrolysates obtained from agro-industrial byproducts have received much attentions due to their positive roles in regulating plant responses to environmental stresses. However, little is known about the roles of animal protein hydrolysates in mediating seed drought tolerance and the underlying mechanism. Here, the effects of seed priming with pig blood protein hydrolysates (PP) on tomato seed germination and seedling growth under drought stress were investigated. Methods Tomato seeds were soaked with different concentrations of PP solutions for 24 h, and then transferred to filter paper moistened with distilled water or 10% PEG-6000 solution in Petri dish. The germination traits, seeding growth, reserve mobilization, osmolytes, and antioxidant system were determined.Results PP priming effectively alleviated the reduction in seed germination traits, resulting in improved tomato seedling growth under drought stress. PP priming enhanced amylase and sucrose synthase activities, soluble sugar, soluble protein, and free amino acid levels, thereby promoting reserve mobilization in seeds. Moreover, PP priming also reduces osmotic toxicity by increasing the accumulation of proline, soluble protein, and soluble sugar. Drought stress substantially enhanced the production of ROS and subsequent increases in MDA and Evans blue uptake, which were significantly alleviated after PP priming by improving the activities of SOD, POD, and CAT, and non-enzymatic antioxidants. Conclusion PP priming is a feasible method for improving tomato seed germination and seedling growth under drought stress by enhancing reserve mobilization, osmolyte accumulation, and antioxidant systems.