Spatial working memory and the ability of a cholinesterase inhibitor to enhance memory were assessed at 4, 10, and 16 months of ages in control and Ts65Dn mice, a partial trisomy model of Down syndrome, with possibly significant relationships to Alzheimer's Disease as well. In addition, ACh release during memory testing was measured in samples collected from the hippocampus using in vivo microdialysis at 4, 10, and 22-25 months of age. When tested on a four-arm spontaneous alternation task, the Ts65Dn mice exhibited impaired memory scores at both 4 and 10 months. At 16 months, control performance had declined toward that of the Ts65Dn mice and the difference in scores across genotypes was not significant. Physostigmine (50 μg/kg) fully reversed memory deficits in the Ts65Dn mice in the 4-month-old group but not in older mice. Ts65Dn and control mice exhibited comparable baseline levels of ACh release at all ages tested; these levels did not decline significantly across age in either genotype. ACh release increased significantly during alternation testing only in the young Ts65Dn and control mice. However, the increase in ACh release during alternation testing was significantly greater in control than Ts65Dn mice at this age. The controls exhibited a significant age-related decline in the testing-related increase in ACh release. With only a small increase during testing in young Ts65Dn mice, the age-related decline in responsiveness of ACh release to testing was not significant in these mice. Overall, these results suggest that diminished responsiveness of ACh release in the hippocampus to behavioral testing may contribute memory impairments in Ts65Dn mice.