SummarySequencing of an Ixodes pacificus salivary gland cDNA library yielded 1068 sequences with an average undetermined nucleotide of 1.9% and an average length of 487 base pairs. Assembly of the expressed sequence tags yielded 557 contigs, 138 of which appear to code for secreted peptides or proteins based on translation of a putative signal peptide. Based on the BLASTX similarity of these contigs to 66 matches of Ixodes scapularis peptide sequences, only 58% sequence identity was found, indicating a rapid divergence of salivary proteins as observed previously for mosquito and triatomine bug salivary proteins. Here we report 106 mostly full-length sequences that clustered in 16 different families: Basic-tail proteins rich in lysine in the carboxy-terminal, Kunitz-containing proteins (monolaris, ixolaris and penthalaris families), proline-rich peptides, 5-kDa.-, 9.4 kDa.-, and 18.7 kDa.-proteins of unknown functions, in addition to metalloproteases (class PIII-like) similar to reprolysins. We also have found a family of disintegrins, named ixodegrins that display homology to variabilin, a GPIIb/IIIa antagonist from the tick Dermacentor variabilis. In addition, we describe peptides (here named ixostatins) that display remarkable similarities to the cysteine-rich domain of ADAMST-4 (aggrecanase). Many molecules were assigned in the lipocalin family (histaminebinding proteins); others appear to be involved in oxidant metabolism, and still others were similar to ixodid proteins such as the anticomplement ISAC. We also identified for the first time a neuropeptide-like protein (nlp-31) with GGY repeats that may have antimicrobial activity. In addition, 16 novel proteins without significant similarities to other tick proteins and 37 housekeeping proteins that may be useful for phylogenetic studies are described. Some of these proteins may be useful for studying vascular biology or the immune system, for vaccine development, or as immunoreagents to detect prior exposure to ticks. Electronic version of the manuscript can be found at http://www.ncbi.nlm.nih.gov/projects/omes/.