We have confirmed the propensity of fragments of cytochrome c to form complexes that reproduce the structure and, in part, the functionality, of the native protein by preparing four novel complexes. We have used trypsin under three different sets of conditions in sequence to prepare a contiguous two-fragment complex (1-55).(56-104). One of the intermediates is a stable overlapping complex (1-65).(56-104). Conditions for limited acid hydrolysis of peptide bonds in cytochrome c have been developed that optimize the yield of fragments (1-50) and (51-104). These two fragments also form a stable association, as do (1-50) and (56-104). These complexes are potentially useful for the semisynthesis of analogues modified in the region of the cleavage sites, which include a number of highly conserved amino acid residues, and are being used for studies of protein folding, interactions with oxidase, cytochrome c immunogenicity and of artificially induced spontaneous resyntheses between complexing fragments. Like other known two-fragment complexes of cytochrome c, they exhibit normal visible spectra, including the presence of the 695 nm band, indicative of a functional haem crevice. Studies of their biological activities and redox potentials lead to a number of conclusions on structure-function relationships in cytochrome c. Most significantly there is a linear relationship between the logarithm of electron-transfer rates from cytochrome c reductase and redox potential in this series of analogues, indicating that such transfer is thermodynamically controlled. This discovery contributes to our understanding of the interaction of cytochrome and reductase. Since the relationship is obeyed by other types of analogues, except for those that involve modification of the active site of cytochrome c, we have a useful diagnostic for those residues that participate directly in electron transfer.