Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is characterized by hepatic fat accumulation by metabolic dysfunction. The rising prevalence of MAFLD, especially among Asians, may be associated with changes in gut microbiota. We investigated gut microbiota characteristics and potential mechanisms leading to MAFLD development according to enterotypes. Case-control studies examining the gut microbiota composition between MAFLD and non-MAFLD participants were searched in public databases until July 2023. Gut microbiota was categorized into two enterotypes by principal component analysis. According to the enterotypes, LEfSe, ALDEx2, XGBoost, and DCiPatho were utilized to identify differential abundances and pathogenic microbes in the gut between the MAFLD and non-MAFLD groups. We analyzed microbial community networks with the SprCC module and predicted microbial functions. In the Prevotella enterotype (ET-P), 98.6% of Asians and 65.1% of Caucasians were associated with MAFLD (p = 0.049). MAFLD incidence was correlated with enterotype, age, obesity, and ethnicity (p < 0.05). Asian MAFLD patients exhibited decreased Firmicutes and Akkermansia muciniphila and increased Bacteroidetes and P. copri. The pathogenicity scores were 0.006 for A. muciniphila and 0.868 for P. copri. The Asian MAFLD group showed decreased stability and complexity in the gut microbiota network. Metagenome function analysis revealed higher fructose metabolism and lipopolysaccharide (LPS) biosynthesis and lower animal proteins and α-linolenic acid metabolism in Asians with MAFLD compared with the non-MAFLD group. LPS biosynthesis was positively correlated with P. copri (p < 0.05). In conclusion, P. copri emerged as a potential microbial biomarker for MAFLD. These findings enhance our understanding of the pathological mechanisms of MAFLD mediated through the gut microbiota, providing insights for future interventions.