Prospective identification of patients whose chronic myeloid leukemia (CML) will progress to blast crisis is currently not possible. PP2A is a phosphatase and tumor suppressor that regulates cell proliferation, differentiation, and survival. Cancerous inhibitor of PP2A (CIP2A) is a recently described inhibitor of PP2A in breast and gastric cancer. The aim of this study was to investigate whether CIP2A played a role in CML and whether PP2A or its inhibitor proteins CIP2A or SET could predict clinical outcome. At the time of diagnosis of CML, patients who will later progress to blast crisis have significantly higher levels of CIP2A protein (P < .0001) than patients who do not progress, suggesting that PP2A is functionally inactive. We show that the potential mechanism for disease progression is via altered phosphorylation of the oncogene c-Myc. Knockdown of CIP2A results in increased PP2A activity, decreased c-Myc levels, and a decrease in BCR-ABL1 tyrosine kinase activity. We demonstrate that CIP2A levels at diagnosis can consistently predict patients who will progress to blast crisis. The data show that CIP2A is biologically and clinically important in CML and may be a novel therapeutic target. (Blood. 2011;117(24):6660-6668)
IntroductionChronic myeloid leukemia (CML) is a malignant disease of the primitive hematologic cell, characterized by inappropriate expansion of myeloid cells. Although this disease is readily controlled by imatinib, approximately one-third of patients will eventually fail treatment 1,2 ; and a significant proportion of these will progress toward blast crisis (BC), which is usually rapidly fatal. Poor response to imatinib and progression to BC have been linked to high BCR-ABL1 tyrosine kinase activity, 3 but why one patient can remain in well-controlled chronic phase for decades whereas another may rapidly progress to BC is poorly understood.The BCR-ABL1 tyrosine kinase in CML is responsible for growth and survival of the malignant cells through activation of signaling pathways, such as the mitogen-activated protein kinase cascade and the PI3K pathway. 4,5 A major cellular serine/threonine phosphatase working to down-regulate activation of these pathways is the tumor suppressor protein phosphatase 2A (PP2A). 6 In CML cells, PP2A is a key target of BCR-ABL1 signaling; this protein becomes inactivated in these cells because BCR-ABL1 stimulates prevention of its auto-dephosphorylation at tyrosine 307 . 7,8 Maintenance of pY 307 -PP2A levels in CML cells feeds back to BCR-ABL1 and facilitates increased and sustained kinase activity. Inhibition of BCR-ABL1 by imatinib results in reactivation of PP2A, inducing both suppression of growth and enhanced apoptosis of the leukemic cells. 8 However, it is unknown whether Y 307 in PP2A is a direct substrate of BCR-ABL1, and the mechanism regulating phosphorylation of PP2A at this site is not clearly defined.One proposal for the mechanism through which BCR-ABL1 regulates PP2A activity in CML cells involves expression of the PP2A inhibitor protein SET. In ...