Neutrophils are the primary immune cells that respond to inflammation and combat microbial transgression. In order to thrive, the bacteria residing in their mammalian host have to withstand the anti-bactericidal responses of neutrophils. We report that enterobactin (Ent), a catecholate siderophore expressed by E. coli, inhibited PMA-induced generation of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) in both mouse and human neutrophils. Ent also impaired the degranulation of primary granules, inhibited phagocytosis and bactericidal activity of neutrophils, but without affecting their migration and chemotaxis. Molecular analysis revealed that Ent can chelate intracellular labile iron that is required for neutrophil oxidative responses. Other siderophores (pyoverdine, ferrichrome, deferoxamine) likewise inhibited ROS and NETs in neutrophils, thus indicating that the chelation of iron may largely explain their inhibitory effects. To counter iron theft by Ent, neutrophils rely on the siderophore-binding protein lipocalin 2 (Lcn2) in a ‘tug-of-war’ for iron. The inhibition of neutrophil ROS and NETs by Ent was augmented in Lcn2-deficient neutrophils when compared to WT neutrophils, but rescued by the exogenous addition of recombinant Lcn2. Taken together, our findings illustrate the novel concept that microbial siderophore’s iron scavenging property may serve as an anti-radical defense system, that neutralizes immune functions of neutrophils.