Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Malignant tumors pose a significant threat to global public health. Promoting programmed cell death in cancer cells has become a critical strategy for cancer treatment. PANoptosis, a newly discovered form of regulated cell death, integrates key molecular components of pyroptosis, apoptosis, and necroptosis, activating these three death pathways simultaneously to achieve synergistic multi‐mechanistic killing. PANoptosis significantly inhibits cancer cell growth and resistance, making tumor‐specific induction of PANoptosis a potential cancer therapeutic strategy. Currently, cancer treatment research related to PANoptosis is mainly focused on the development of small molecules and cytokines. However, these approaches still face limitations in terms of metabolic stability and tumor specificity. The development of nanotechnology offers new opportunities for cancer treatment by improving targeting efficiency, extending circulation time, and enhancing therapeutic efficacy and safety. Additionally, the unique physicochemical properties of nanomaterials can effectively optimize PANoptosis induction strategies, establishing nanomaterials as ideal candidates for inducing PANoptosis in tumor cells. This review summarizes the concept and mechanisms of PANoptosis, highlights the latest applications of nanoagents in PANoptosis‐based anti‐cancer therapy, and discusses the challenges and future directions for clinical translation. This review will inspire further exploration and development of PANoptosis‐based cancer treatments, providing new perspectives for researchers in the field
Malignant tumors pose a significant threat to global public health. Promoting programmed cell death in cancer cells has become a critical strategy for cancer treatment. PANoptosis, a newly discovered form of regulated cell death, integrates key molecular components of pyroptosis, apoptosis, and necroptosis, activating these three death pathways simultaneously to achieve synergistic multi‐mechanistic killing. PANoptosis significantly inhibits cancer cell growth and resistance, making tumor‐specific induction of PANoptosis a potential cancer therapeutic strategy. Currently, cancer treatment research related to PANoptosis is mainly focused on the development of small molecules and cytokines. However, these approaches still face limitations in terms of metabolic stability and tumor specificity. The development of nanotechnology offers new opportunities for cancer treatment by improving targeting efficiency, extending circulation time, and enhancing therapeutic efficacy and safety. Additionally, the unique physicochemical properties of nanomaterials can effectively optimize PANoptosis induction strategies, establishing nanomaterials as ideal candidates for inducing PANoptosis in tumor cells. This review summarizes the concept and mechanisms of PANoptosis, highlights the latest applications of nanoagents in PANoptosis‐based anti‐cancer therapy, and discusses the challenges and future directions for clinical translation. This review will inspire further exploration and development of PANoptosis‐based cancer treatments, providing new perspectives for researchers in the field
Malignant tumors pose a significant threat to global public health. Promoting programmed cell death in cancer cells has become a critical strategy for cancer treatment. PANoptosis, a newly discovered form of regulated cell death, integrates key molecular components of pyroptosis, apoptosis, and necroptosis, activating these three death pathways simultaneously to achieve synergistic multi‐mechanistic killing. PANoptosis significantly inhibits cancer cell growth and resistance, making tumor‐specific induction of PANoptosis a potential cancer therapeutic strategy. Currently, cancer treatment research related to PANoptosis is mainly focused on the development of small molecules and cytokines. However, these approaches still face limitations in terms of metabolic stability and tumor specificity. The development of nanotechnology offers new opportunities for cancer treatment by improving targeting efficiency, extending circulation time, and enhancing therapeutic efficacy and safety. Additionally, the unique physicochemical properties of nanomaterials can effectively optimize PANoptosis induction strategies, establishing nanomaterials as ideal candidates for inducing PANoptosis in tumor cells. This review summarizes the concept and mechanisms of PANoptosis, highlights the latest applications of nanoagents in PANoptosis‐based anti‐cancer therapy, and discusses the challenges and future directions for clinical translation. This review will inspire further exploration and development of PANoptosis‐based cancer treatments, providing new perspectives for researchers in the field
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.