Starting from a bi-continuous semigroup in a Banach space X (which might actually be strongly continuous), we investigate continuity properties of the semigroup that is induced in real interpolation spaces between X and the domain D(A) of the generator. Of particular interest is the case $$(X,D(A))_{\theta ,\infty }$$
(
X
,
D
(
A
)
)
θ
,
∞
. We obtain topologies with respect to which the induced semigroup is bi-continuous, among them topologies induced by a variety of norms. We illustrate our results with applications to a nonlinear Schrödinger equation and to the Navier–Stokes equations on $$\mathbb {R}^d$$
R
d
.