Euler's equations govern the behaviour of gravity waves on the surface of an incompressible, inviscid and irrotational fluid of arbitrary depth. We investigate the spectral stability of sufficiently small-amplitude, one-dimensional Stokes waves, i.e. periodic gravity waves of permanent form and constant velocity, in both finite and infinite depth. We develop a perturbation method to describe the first few high-frequency instabilities away from the origin, present in the spectrum of the linearization about the small-amplitude Stokes waves. Asymptotic and numerical computations of these instabilities are compared for the first time, with excellent agreement.