A ring R is said to be right MP-injective if every monomorphism from a principal right ideal to R extends to an endomorphism of R. A ring R is said to be right MGP-injective if, for any 0 = a ∈ R, there exists a positive integer n such that a n = 0 and every monomorphism from a n R to R extends to R. We shall study characterizations and properties of these two classes of rings. Some interesting results on these rings are obtained. In particular, conditions under which right MGP-injective rings are semisimple artinian rings, von Neumann regular rings, and QF-rings are given.