We determine the rational class and Picard groups of the moduli space of stable logarithmic maps in genus zero, with target projective space relative a hyperplane. For the class group we exhibit an explicit basis consisting of boundary divisors. For the Picard group we exhibit a spanning set indexed by piecewise-linear functions on the tropicalisation. In both cases a complete set of boundary relations is obtained by pulling back the WDVV relations from the space of stable curves. Our proofs hinge on a controlled technique for manufacturing test curves in logarithmic mapping spaces, opening up the topology of these spaces to further study.