1986
DOI: 10.1016/0022-0396(86)90025-2
|View full text |Cite
|
Sign up to set email alerts
|

Modulus of stability for vector fields on 3-manifolds

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
8
0
1

Year Published

1987
1987
2010
2010

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 9 publications
(9 citation statements)
references
References 9 publications
0
8
0
1
Order By: Relevance
“…For one parameter families of vector fields, a complete set of topological invariants near quasi-transversal saddle-connections was established in [14], after the initial contributions of [13] and [1].…”
Section: / Beloqui and M J Pacificomentioning
confidence: 99%
See 1 more Smart Citation
“…For one parameter families of vector fields, a complete set of topological invariants near quasi-transversal saddle-connections was established in [14], after the initial contributions of [13] and [1].…”
Section: / Beloqui and M J Pacificomentioning
confidence: 99%
“…In [14] it is proved that for a generic one parameter family of diffeomorphisms going through a quasi-transversal bifurcation, there are two moduli for strong equivalence; namely @ s (q) and /?"(/>). For mild equivalence there is one modulus which is A.For one parameter families of vector fields, a complete set of topological invariants near quasi-transversal saddle-connections was established in [14], after the initial contributions of [13] and [1].For generic two-parameter families of diffeomorphisms, even the local study near a codimension-two fixed point is not yet complete. Nevertheless, there are important results like in [4], where the unfolding of a codimension-two Hopf bifurcation is analysed.…”
mentioning
confidence: 99%
“…To prove the theorem, we consider the 'period 2 (as the Poincare map) orbits'; see figure 1. The theorem of Silnikov implies that there are infinitely many such orbits arbitrarily close to the homoclinic orbit F. We use some knot invariants of the periodic orbits to count the number of twists around the homoclinic orbit F. The ratio of twists in the first and the second turns determines the ratio of eigenvalues A and /JL.…”
Section: Y Togawamentioning
confidence: 99%
“…For vector fields the same question can be studied and in fact for the codimension one case without cycles the existence or not of moduli has been settled through the work in [13], [14], [12] and [1]. However the techniques have to be somewhat different from the ones for diffeomorphisms: the main reason for this is that the topological equivalence does not require to preserve the 'time length'.…”
Section: Y Togawamentioning
confidence: 99%
“…Sur une surface, il n'y a aucun invariant d'équivalence topologique : deux champs de vecteurs de classe C 1 sur une surface sont toujours topologiquementéquivalents au voisinage d'une connexion de selles. De nombreux auteurs (voir par exemple [2,[8][9][10]) ont donné des invariants d'équivalence topologique de champs de vecteurs au voisinage d'une connexion de codimension 1, en toutes dimensions. En dimension 3, le phénomène que nousétudions est un phénomène de codimension 2 où la situation paraît extrêmement simple : on considère un champ de vecteurs X de R 3 possédant deux zéros hyperboliques p et q de type selle, tels que la variété instable de p et la variété stable de q soient de dimension 1.…”
Section: Introductionunclassified