Résumé. Nous donnons des invariants complets pour l'équivalence topologique de champs de vecteurs, en dimension 3, au voisinage d'une connexion (par des variétés invariantes de dimension 1) entre des selles possédant des valeurs propres complexes.Abstract. We give a complete set of invariants for the topological equivalence of vector fields on 3-manifolds in the neighborhood of a connection by one-dimensional separatrices between two hyperbolic saddles having complex eigenvalues.More precisely, let X be a C 2 vector field on a 3-manifold, having two hyperbolic zeros p, q of saddle type, such that p admits a contracting complex eigenvalue −c p (1 + iα), c p > 0, α = 0, and q admits an expanding complex eigenvalue c q (1 + iβ), c q > 0, β = 0. We assume that a one-dimensional unstable separatrix of p coincides with a onedimensional stable separatrix of q, and we call the connection the compact segment γ consisting of p, q and their common separatrix (see Figure 1). Such a connection is a codimension two phenomenon.The behaviour of a vector field X in the neighborhood of the connection is given, up to topological conjugacy, by the linear part of X in the neighborhood of p and q and by the transition map between two discs transversal to X in those neighborhoods. First, we choose coordinates in the neighborhoods of p and q in order to put X in canonical form and we show that, up to topological equivalence, we can assume that the transition map is linear. Then our main result is as follows :• When the linear transition map (expressed in the chosen coordinates) is conformal or when its modulus of conformality is small (i.e. less than some function ψ(α, β)), there is no topological invariant : every two such vector fields are topologically equivalent.
•On the other hand, when the modulus of conformality is greater than ψ(α, β), there are two topological invariants : one is equal to the ratio α/β, the other one is related to the modulus of conformality of the transition map.
Equivalence topologique de connexions de selles 1349Le comportement (àéquivalence topologique près) d'un champ au voisinage d'une connexion est essentiellement décrit par sa partie linéaire au voisinage des deux points selles, et par une transition T , qui est l'holonomie du champ le long de la connexion entre deux disques transverses au champ et contenus dans des ouverts de linéarisation au voisinage des points singuliers.Dans le cas où les valeurs propres associées aux points p et q sont toutes réelles, Vegter (voir [11, 12]) montre que, génériquement, il n'y a pas de module de stabilité : toute perturbation du champ X, suffisamment C 1 -petite et préservant la connexion, est topologiquementéquivalenteà X au voisinage de la connexion. Ce résultat aété généralisé en toutes dimensions par Dias Carneiro et Palis (voir [4]).Nous considérons ici le cas où les points selles p et q possèdent chacun une valeur propre complexe (non-réelle), stable pour p (donc de partie réelle négative) et instable pour q (de partie réelle positive). Nous donnons dans ce c...