Abstract:The hygrothermal aging of short glass fiber-reinforced polyamide 6 materials (PA6 GF) represents a major problem, especially in thin-walled components, such as in the automotive sector. In this study, therefore, the thickness and the glass fiber content of PA6 GF materials were varied and the materials were exposed to hygrothermal aging. The temperature and relative humidity were selected in the range from´40˝C up to 85˝C, and from 10% up to 85% relative humidity (RH). In the dry-as-molded state, the determined Poisson's ratio of the PA6 GF materials was correlated with the fiber orientation based on computer tomography (MicroCT) data and shows a linear dependence with respect to the fiber orientation along and transverse to the flow direction of the injection molding process. With hygrothermal aging, the value of Poisson's ratio increases in the flow direction in the same way as it decreases perpendicular to the flow direction due to water absorption.