The gyspy moth Lymantria dispar Linnaeus, a widely distributed leaf-eating pest, is considered geographically isolated in the world, with two Asian gypsy moth subspecies, Lymantria dispar asiatica and Lymantria dispar japonica. In China, only one subspecies, L. d. asiatica, has been observed. In this study, we characterized gypsy moth diversity and divergence using 427 samples covering a wide range of the species distribution, with a focus on sampling along a latitudinal gradient in China. We combine the quantitative analysis of male genitalia and the genetic diversity analysis of nine microsatellite loci of nuclear genes nuclear genes to study the structure of gypsy moth individuals in 23 locations in the world and the male genitalia of gypsy moths in some areas. In mixed ancestry model-based clustering analyses based on nuclear simple sequence repeats, gypsy moths were divided into three well-known subspecies, a unique North American cluster, and a southern Chinese cluster with differentiation between the Asian gypsy moth and European gypsy moth. We also found individuals identified as European gypsy moths in two distant regions in China. The results of a quantitative analysis of male genitalia characteristics were consistent with an analysis of genetic structure and revealed the differentiation of gypsy moths in southern China and of hybrids suspected to be associated with L. d. japonica in the Russian Far East. Admixture in gypsy moths can be explained by many factors such as human transport. In China, we detected European gypsy moths, and found unexpectedly high genetic diversity within populations across a wide range of latitudes.