The system of the four different human blood groups is based on the oligosaccharide antigens A or B, which are located on the surface of blood cells and other cells including endothelial cells, attached to the membrane proteins or lipids. After transfusion, the presence of these antigens on the apical surface of endothelial cells could induce an immunological reaction against the host. The final oligosaccharide sequence of AgA consists of Gal-GlcNAc-Gal (GalNAc)-Fuc. AgB contains Gal-GlcNAc-Gal (Gal)-Fuc. These antigens are synthesised in the Golgi complex (GC) using unique Golgi glycosylation enzymes (GGEs). People with AgA also synthesise antibodies against AgB (group A [II]). People with AgB synthesise antibodies against AgA (group B [III]). People expressing AgA together with AgB (group AB [IV]) do not have these antibodies, while people who do not express these antigens (group O [0; I]) synthesise antibodies against both antigens. Consequently, the antibodies are synthesised against antigens that apparently do not exist in the body. Here, we compared the prediction power of the main hypotheses explaining the formation of these antibodies, namely, the concept of natural antibodies, the gut bacteria-derived antibody hypothesis, and the antibodies formed as a result of glycosylation mistakes or de-sialylation of polysaccharide chains. We assume that when the GC is overloaded with lipids, other less specialised GGEs could make mistakes and synthesise the antigens of these blood groups. Alternatively, under these conditions, the chylomicrons formed in the enterocytes may, under this overload, linger in the post-Golgi compartment, which is temporarily connected to the endosomes. These compartments contain neuraminidases that can cleave off sialic acid, unmasking these blood antigens located below the acid and inducing the production of antibodies.