Riemerella anatipestifer is a Gram-negative bacterium that can cause disease in a wide range of wild and domesticated birds, especially waterfowl. The presence of an antibiotic-resistance gene in R. anatipestifer has not yet been reported, indicating the need for investigation. In the present study, 40.5% of R. anatipestifer isolates were found to exhibit resistance to chloramphenicol, while 45.9% showed intermediate resistance and 13.5% were susceptible to chloramphenicol, an antibiotic that has been prohibited for use in food animals in Taiwan since 2003. The resistance gene was identified as the cat gene and cloned by library sequencing. The prevalence of the cat gene in Taiwanese R. anatipestifer isolates was 78.4%. The position of the cat gene was then determined within the novel plasmid, designated pRA0511. pRA0511 was sequenced and shown to be 11,435 bp in size with 10 open reading frames (ORFs). Proteins putatively encoded by these 10 ORFs included four drug-resistance-associated proteins. Two proteins designed as chloramphenicol acetyltransferases (CATs) were encoded by two non-adjacent ORFs, and the other two were TetX2 and a multi-drug ABC transporter permease/ATPase. The putative CAT protein had 62.9 to 79.5% homology to a known type B CAT. The pRA0511 plasmid is the first identified drug-resistance plasmid in R. anatipestifer, more specifically associated with chloramphenicol resistance.