Hydrogels have emerged as a focal point of research in the biomedical field due to their applications in tissue repair. However, the majority of hydrogels lack the capability to release oxygen, constraining their therapeutic outcomes in environments with hypoxic tissues. In recent years, oxygen‐releasing hydrogels have garnered extensive attention in the field of tissue engineering, owing to their ability to modulate oxygen release and meet the diverse oxygenation requirements of various tissues. These hydrogels can enhance repair efficiency and promote tissue regeneration in hypoxic tissue environments. The design of oxygen‐releasing hydrogels primarily involves the utilization of diverse oxygen sources, such as algae, perfluorocarbons, and peroxides, to achieve optimal tissue oxygenation. This review provides a comprehensive summary of the design and fabrication strategies of oxygen‐releasing hydrogels, discusses deeply into their underlying oxygen‐releasing mechanisms, and their myriad applications in tissue repair along with the prospective challenges.