Infectious bursal disease virus (IBDV) serotype 1 is the causative agent of a highly contagious immunosuppressive disease of young chickens. In the past, a number of antigenic, as well as pathogenic, subtypes have been described. The determination of the antigenic makeup of circulating strains is of vital interest to the poultry industry because changes in the antigenicity of circulating field strains have an impact on the use of vaccines. To obtain a more comprehensive overview of the relationship between the nucleotide and amino acid sequence and the antigenic makeup of field isolates, a system based on reverse genetics of IBDV was established. Using this approach, a database for field isolates from three different states in the United States (Georgia, Alabama, and Louisiana), consisting of nucleotide sequence, amino acid sequence, and a reaction pattern based on a panel of monoclonal antibodies, was established. The obtained results showed that phylogenic analysis, which is based on the similarity of sequences, would lead to false conclusions regarding a possible antigenic makeup of the particular isolate. Sequences of field samples were divided into three groups: 1) those that grouped with variant strain E/Del sequences but were antigenically different, 2) those that did not group with sequences of E/Del but were similar in their antigenic makeup, and 3) those that did not group with E/Del sequences and were antigenically different. In addition, using the reverse-genetics approach, a number of field isolates showed no reactivity with any of the used monoclonal antibodies, indicating that an unknown, antigenic subtype of IBDV serotype 1 is circulating in the field.