Soybean [Glycine max (L.) Merr.] is a nutrient-rich crop that offers a sustainable source of dietary protein and edible oil. Determining the level of genetic diversity and relationships between various genetic resources involved in breeding programs is very important in crop improvement strategies. This study evaluated 100 soybean accessions with diverse origins for 10 important agronomic traits, including plant height (PH), an important plant adaptation-related trait impacting yield, in conditions in southeastern Kazakhstan for 2 years. The comparison of different groups of PH (tall, middle, and short) using a t-test suggested that the group of plants with the tallest PH provided a higher yield (p < 0.001) in relatively dry field conditions. The genetic diversity of the accessions was estimated using 25 simple sequence repeat (SSR) markers previously known to be associated with plant height. The results showed a significant variation among different groups of origin for all measured agronomic traits, as well as high genetic diversity, with the PIC (polymorphism information content) varying from 0.140 to 0.732, with an average of 0.524. Nei’s diversity index ranged between 0.152 and 0.747, with an average of 0.526. The principal coordinate analysis (PCoA) of the studied soybean collection showed that Kazakhstan accessions were genetically distant from European, East Asian, and North American cultivars. Twelve out of twenty-five SSR markers demonstrated significant associations with ten studied agronomic traits, including PH (p < 0.05). Six SSRs with pleiotropic effects for studied traits were selected, and their haplotypes with phenotypic effects were generated for each soybean accession. The obtained results can be used in soybean improvement programs, including molecular-assisted breeding projects.