Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background The high-throughput sequencing technologies have revolutionized the identification of novel RNA viruses. Given that viruses are infectious agents, identifying hosts of these new viruses carries significant implications for public health and provides valuable insights into the dynamics of the microbiome. However, determining the hosts of these newly discovered viruses is not always straightforward, especially in the case of viruses detected in environmental samples. Even for host-associated samples, it is not always correct to assign the sample origin as the host of the identified viruses. The process of assigning hosts to RNA viruses remains challenging due to their high mutation rates and vast diversity. Results In this study, we introduce RNAVirHost, a machine learning–based tool that predicts the hosts of RNA viruses solely based on viral genomes. RNAVirHost is a hierarchical classification framework that predicts hosts at different taxonomic levels. We demonstrate the superior accuracy of RNAVirHost in predicting hosts of RNA viruses through comprehensive comparisons with various state-of-the-art techniques. When applying to viruses from novel genera, RNAVirHost achieved the highest accuracy of 84.3%, outperforming the alignment-based strategy by 12.1%. Conclusions The application of machine learning models has proven beneficial in predicting hosts of RNA viruses. By integrating genomic traits and sequence homologies, RNAVirHost provides a cost-effective and efficient strategy for host prediction. We believe that RNAVirHost can greatly assist in RNA virus analyses and contribute to pandemic surveillance.
Background The high-throughput sequencing technologies have revolutionized the identification of novel RNA viruses. Given that viruses are infectious agents, identifying hosts of these new viruses carries significant implications for public health and provides valuable insights into the dynamics of the microbiome. However, determining the hosts of these newly discovered viruses is not always straightforward, especially in the case of viruses detected in environmental samples. Even for host-associated samples, it is not always correct to assign the sample origin as the host of the identified viruses. The process of assigning hosts to RNA viruses remains challenging due to their high mutation rates and vast diversity. Results In this study, we introduce RNAVirHost, a machine learning–based tool that predicts the hosts of RNA viruses solely based on viral genomes. RNAVirHost is a hierarchical classification framework that predicts hosts at different taxonomic levels. We demonstrate the superior accuracy of RNAVirHost in predicting hosts of RNA viruses through comprehensive comparisons with various state-of-the-art techniques. When applying to viruses from novel genera, RNAVirHost achieved the highest accuracy of 84.3%, outperforming the alignment-based strategy by 12.1%. Conclusions The application of machine learning models has proven beneficial in predicting hosts of RNA viruses. By integrating genomic traits and sequence homologies, RNAVirHost provides a cost-effective and efficient strategy for host prediction. We believe that RNAVirHost can greatly assist in RNA virus analyses and contribute to pandemic surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.