were sensitive to all fungicides tested; from north to south, the frequency of sensitive isolates in the regions of Valparaiso, Metropolitana and O'Higgins ranged from 48.15% to 21.1% and 5.88%, respectively. Four hundred and twenty isolates (79%) showed resistance to single or multiple fungicides, 134 (25.4%) were simultaneously resistant to azoxystrobin and pyrimethanil. No fludioxonil-resistant isolates were found, indicating that fludioxonil has great potential for gray mold control in table grapes in Chile. From sixty randomly selected B. cinerea isolates, only the azoxystrobin-resistant isolates carried the G143A point mutation; according to the cytochrome b (cyt b) gene structure, the third intron Bcbi-143/144 was only detected in the azoxystrobin-sensitive isolates. The H272R and H272Y point mutations in the succinate dehydrogenase subunit B (sdhB) gene were associated only with the boscalid-resistant isolates. The F412S and F412V point mutations were found in the sequenced erg27 gene of randomly selected fenhexamid-resistant isolates. These results contribute to the knowledge of B. cinerea fungicide resistance for table grape vine crops in Central Chile, particularly for the development of multiple-resistance and the associated resistance mechanisms of azoxystrobin, boscalid and fenhexamid-resistant isolate populations. Antiresistance strategies are discussed in a general manner.