In this study, we investigated the molecular epidemiology and evolution of influenza viruses from patients infected during the 2013-2014 influenza season in Beijing. A phylogenetic analysis of the hemagglutinin (HA) and neuraminidase (NA) sequences of influenza A and B viruses from 18 patients (6 A(H1N1)pdm09, 4 H3N2, and 8 influenza B virus) was performed. Among the influenza A viruses, A(H1N1)pdm09 was the dominant subtype, whereas the B/Yamagata lineage was predominant for influenza B. The influenza B HA and NA strains in Beijing were dominated by reassortants derived from the Yamagata lineage and the Victoria lineage, respectively. All six A(H1N1)pdm09 strains fell into the 6B genetic group with amino acid substitutions D97N, S185T, K163Q, and A256T; the four H3N2 strains fell into genetic group 3C.3 with substitutions T128A, R142G, N145S, and V186G, and the eight influenza B strains were categorized into subgroup 3.1 and harbored an N217S mutation. Two new mutations (K180Q and G187E at the Sa and Ca antigenic sites of the H1 segment, respectively), which were not detected during the preceding influenza season, were identified. Mutations N131K, S165I, N181Y, and D212N in HA of influenza B mapped to the 120-loop, 150-loop, 160-loop, and 190-helix, respectively. Our results reveal the molecular epidemiology and phylogenetic characteristics of influenza viruses within a single geographic location and can have implications for vaccination selection in northern China.