The apical junctional complex (AJC) is a membrane protein ultrastructure that regulates cell adhesion and homeostasis. The tight junction (TJ) and the adherens junction (AJ) are substructures of the AJC. The interplay between TJ and AJ membrane proteins to assemble the AJC remains unclear. We employed synthetic biology strategies to express the basic membrane elements of a simple AJC—the adhesive extracellular domains of junctional adhesion molecule A (JAM‐A), epithelial cadherin, claudin 1, and occludin—to study their interactions. Our results suggest that calcium concentration fluctuations and JAM‐A, acting as an interface molecule between the TJ and AJ, orchestrate their interplay. Calcium affects the secondary structure, oligomerization, and binding affinity of homotypic and heterotypic interactions of TJ and AJ components, thus acting as a molecular switch influencing AJC dynamics.