The ABO system is one of the most important blood group systems in transfusion/transplantation medicine. However, the evolutionary significance of the ABO gene and its polymorphism remained unknown. We took an integrative approach to gain insights into the significance of the evolutionary process of ABO genes, including those related not only phylogenetically but also functionally. We experimentally created a code table correlating amino acid sequence motifs of the ABO gene-encoded glycosyltransferases with GalNAc (A)/galactose (B) specificity, and assigned A/B specificity to individual ABO genes from various species thus going beyond the simple sequence comparison. Together with genome information and phylogenetic analyses, this assignment revealed early appearance of A and B gene sequences in evolution and potentially non-allelic presence of both gene sequences in some animal species. We argue: Evolution may have suppressed the establishment of two independent, functional A and B genes in most vertebrates and promoted A/B conversion through amino acid substitutions and/or recombination; A/B allelism should have existed in common ancestors of primates; and bacterial ABO genes evolved through horizontal and vertical gene transmission into 2 separate groups encoding glycosyltransferases with distinct sugar specificities.T he human histo-blood group ABO system is crucial in safe blood transfusion and cell/tissue/organ transplantation 1,2 . This system consists in A and B oligosaccharide antigens expressed on red blood cells (RBCs) as glycoproteins and glycolipids and antibodies against those antigens in serum. A and B antigens are also expressed by epithelial and endothelial cells, and in secretor type individuals they are also expressed on mucins secreted by exocrine glands. The immuno-dominant structures of A and B antigens are GalNAca1-.3(Fuca1-.2)Gal-and Gala1-.3(Fuca1-.2)Gal-, respectively. A and B alleles of the ABO genetic locus encode A and B transferases, which respectively transfer an N-acetyl-D-galactosamine (GalNAc) or a D-galactose (Gal) to H substances with an a1,3-glycosidic linkage. H substances with the Fuca1-.2Gal-structure are synthesized by fucosylation catalyzed by a1,2-fucosyltransferases (a1,2-FTs) encoded by FUT1/FUT2/SEC1 genes. FUT1-encoded a1,2-FTs and FUT2/SEC1-encoded a1,2-FTs exhibit distinct acceptor substrate specificity, and are differentially expressed amongst tissues. In humans SEC1 is a pseudogene and FUT2 gene presents frequent null alleles so that about 20% of individuals are incapable of expressing either H, A, or B antigens in secretions (nonsecretor type). In the absence of a1,2-FTs no H antigens are produced. Therefore, A/B transferases function only when at least one active a1,2-FT is simultaneously present.In 1990 we correlated the nucleotide sequences of A, B, and O allelic cDNAs and the expression of A and B antigens, and elucidated the molecular genetic basis of human histo-blood group ABO system 3,4 . Four amino acid substitutions (Arg176Gly, Gly235Ser, Leu266Met, an...