The export of virulence factors, such as the capsule polysaccharide, to the cell surface is a critical aspect of the pathogenicity of Cryptococcus neoformans. A view of capsule export via exocytosis and extracellular vesicles is emerging, but the molecular mechanisms underlying virulence factor transport pathways remain to be established. In this study, we characterized the APT1 gene, which encodes a predicted integral membrane P-type ATPase belonging to the type IV, Drs2 family of aminophospholipid translocases (flippases) (APTs). APTs maintain the phospholipid asymmetry that is critical in membrane fusion events for trafficking and in establishing cell polarity. Deletion of the APT1 gene resulted in phenotypes consistent with similar roles in C. neoformans. These included altered actin distribution, increased sensitivity to stress conditions (oxidative and nitrosative stress) and to trafficking inhibitors, such as brefeldin A and monensin, a reduction in exported acid phosphatase activity, and hypersensitivity to the antifungal drugs amphotericin B, fluconazole, and cinnamycin. However, there was no difference in growth, capsule size, or melanin production between the wild type and the apt1 mutant strains at either 30°C or 37°C. Despite the absence of an influence on these major virulence factors, Apt1 was required for survival during interactions with macrophages, and apt1 mutants exhibited attenuated virulence in a mouse inhalation model of cryptococcosis. Therefore, Apt1 contributes to virulence and the stress response in C. neoformans through apparent functions in membrane fusion and trafficking that do not influence the deposition of major virulence factors, such as capsule and melanin, outside the cell.The opportunistic fungal pathogen Cryptococcus neoformans causes life-threatening meningoencephalitis in immunocompromised individuals (44). One million cases of cryptococcosis are estimated to occur each year, and approximately two-thirds of these are fatal (43). Key virulence traits for the fungus include growth at the mammalian host temperature, production of a polysaccharide capsule, deposition of laccase-synthesized melanin in the cell wall, secretion of enzymes, and resistance to host defenses, such as oxidative and nitrosative killing (44).The polysaccharide capsule is a key virulence factor and is both cell associated and released during infection (4). The two species of polysaccharide in the capsule, an abundant glucuronoxylomannan (GXM) and a minor galactoxylomannan (GalXM), cause a number of deleterious effects in mammalian hosts (4, 44). Extracellular vesicles (exosomes) containing capsule polysaccharide are present in culture supernatants, in lysates of macrophages containing C. neoformans, and in association with fungal cells during murine infection (41, 49, 50, 54). These so-called "virulence factor delivery bags" are thought to pass through the cell wall to deliver material outside the cell (50). Proteomic analysis of the vesicles identified 76 proteins, and many of these are associated wit...