Mycoplasma meleagridis infection is widespread in turkeys, causing poor growth and feathering, airsacculitis, osteodystrophy, and reduction in hatchability. Like most mycoplasma species, M. meleagridis is characterized by its inability to synthesize purine and pyrimidine nucleotides de novo. Consistent with this intrinsic deficiency, we here report the cloning, expression, and characterization of a M. meleagridis gene sequence encoding a major surface nuclease, referred to as Mm19. Mm19 consists of a 1941- bp ORF encoding a 646-amino-acid polypeptide with a predicted molecular mass of 74,825 kDa. BLASTP analysis revealed a significant match with the catalytic/dimerization domain of type II restriction enzymes of the RE_AlwI superfamily. This finding is consistent with the genomic location of Mm19 sequence, which dispalys characteristics of a typical type II restriction-modification locus. Like intact M. meleagridis cells, the E. coli-expressed Mm19 fusion product was found to exhibit a nuclease activity against plasmid DNA, double-stranded DNA, single-stranded DNA, and RNA. The Mm19-associated nuclease activity was consistently enhanced with Mg2+ divalent cations, a hallmark of type II restriction enzymes. A rabbit hyperimmune antiserum raised against the bacterially expressed Mm19 strongly reacted with M. meleagridis intact cells and fully neutralized the surface-bound nuclease activity. Collectively, the results show that M. meleagridis expresses a strong surface-bound nuclease activity, which is the product of a single gene sequence that is related to the RE_AlwI superfamily of endonucleases.