Caffeoyl-, feruloyl-and dicaffeoylquinic (chlorogenic) acids in infusions from green and medium roasted coffee beans were identified and quantified by reverse phase liquid chromatography. The chromatographic retention times of chlorogenic acids in coffee are modeled by structure-property relationships. Bioplastic evolution is a view in evolution that conjugates the result of acquired features, and relationships that come out between the principles of evolutionary indeterminacy, morphological determination, and natural selection. Here, it is used to invent the coordination index, which is utilized to typify chlorogenic acids chromatographic retention times. The factors utilized to compute the co-ordination index are the standard molar formation enthalpy, molecular bare, and hydrophobic solvent-accessible surface areas, as well as fractal dimensions. The morphological and coordination indices provide strong correlations. Effect of different types of features is analyzed: thermodynamic, geometric, fractal, etc. Properties are molar formation enthalpy, bare molecular surface area, etc., in linear correlation models. Formation enthalpy, etc. distinguish chlorogenic acids molecular structures.