Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase [AANAT]) is the key enzyme in melatonin synthesis regulated by circadian rhythm. To date, our understanding of the oscillatory mechanism of melatonin has been limited to autoregulatory transcriptional and posttranslational regulations of AANAT mRNA. In this study, we identify three proteins from pineal glands that associate with cis-acting elements within species-specific AANAT 3 untranslated regions to mediate mRNA degradation. These proteins include heterogeneous nuclear ribonucleoprotein R (hnRNP R), hnRNP Q, and hnRNP L. Their RNA-destabilizing function was determined by RNA interference and overexpression approaches. Expression patterns of these factors in pineal glands display robust circadian rhythm. The enhanced levels detected after midnight correlate with an abrupt decline in AANAT mRNA level. A mathematical model for the AANAT mRNA profile and its experimental evidence with rat pinealocytes indicates that rhythmic AANAT mRNA degradation mediated by hnRNP R, hnRNP Q, and hnRNP L is a key process in the regulation of its circadian oscillation.Circadian rhythm is a fundamental biological phenomenon in living organisms (10,41,53). To date, efforts to understand the molecular mechanisms of circadian rhythm have focused mainly on transcriptional regulation. A number of studies show that autoregulatory transcriptional-posttranslational feedback loops are crucial for the rhythmic expression of clock-controlled genes (14,30,40,41,46). However, limited data on the posttranscriptional level are available (45). Since mRNA turnover has notable effects on the synthesis of specific proteins and provides the cell with flexibility in achieving rapid changes at the transcript level (9, 35, 50, 52), it is possible that posttranscriptional regulation functions in the rhythmic expression of circadian genes.Recent evidence supports the existence of posttranscriptional mechanisms. In Drosophila, the degradation of Period (per) mRNA modulates its proper circadian fluctuation (49). The accelerated decay of mouse Per1 (mPer1) mRNA in a tau mutant is additionally suggestive of the presence of a posttranscriptional regulatory pathway (32). In transgenic experiments, the differences between the mRNA fluctuations of clock-controlled genes and reporters were tentatively accounted for by variations in their mRNA stability mediated by 3Ј untranslated regions (3ЈUTRs) (22, 51). In computational modeling approaches, mRNA degradation is assumed in the construction of circadian clock models, although its role in rhythm formation is not currently clear (12, 31). Here, we postulate that dynamic mRNA degradation is essential for the formation of circadian rhythms in clock-controlled gene expression, and we support our theory with mathematical modeling and experimental evidence of rat serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase [AANAT]) mRNA rhythms.AANAT is a rate-limiting enzyme in the melatonin synthetic pathway that drives the daily rhythm in the leve...