Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Colpodella species are free-living protists phylogenetically related to apicomplexans. Colpodella sp. have been detected in human and animal tissues, as well as in ticks and biting flies. The trophozoite and cyst stages of Colpodella species can be distinguished from stages of the prey Parabodo caudatus using Sam-Yellowe’s trichrome staining. Colpodella species obtain nutrients by attaching to their prey, aspirating the prey’s cytoplasmic contents into a posterior food vacuole and encysting. It is unclear whether both trophozoite and cyst stages are present in human and animal tissues. Molecular techniques have detected Colpodella species in human blood, cerebrospinal fluid, and in ticks and flies. However, no morphological information was reported to aid life-cycle stage identification of Colpodella species. This review discusses the increased reports of Colpodella species detection in animals and in arthropods and the need to identify stages present in human and animal tissues. We previously used Sam-Yellowe’s trichrome staining to identify life-cycle stages of Colpodella sp. In this review, we examine the reports of Colpodella species detection in human and animal tissues to determine whether the identification of Colpodella species represents true infections or contaminations of samples collected during routine surveillance of piroplasm infections in animals and arthropods. This review also aims to provide insights regarding Colpodella, nutrient uptake, and the survival of Colpodella sp. within humans, animals, and arthropods, as well as whether the attachment of trophozoites to cells occurs in tissues leading to myzocytosis and endocytosis.
Colpodella species are free-living protists phylogenetically related to apicomplexans. Colpodella sp. have been detected in human and animal tissues, as well as in ticks and biting flies. The trophozoite and cyst stages of Colpodella species can be distinguished from stages of the prey Parabodo caudatus using Sam-Yellowe’s trichrome staining. Colpodella species obtain nutrients by attaching to their prey, aspirating the prey’s cytoplasmic contents into a posterior food vacuole and encysting. It is unclear whether both trophozoite and cyst stages are present in human and animal tissues. Molecular techniques have detected Colpodella species in human blood, cerebrospinal fluid, and in ticks and flies. However, no morphological information was reported to aid life-cycle stage identification of Colpodella species. This review discusses the increased reports of Colpodella species detection in animals and in arthropods and the need to identify stages present in human and animal tissues. We previously used Sam-Yellowe’s trichrome staining to identify life-cycle stages of Colpodella sp. In this review, we examine the reports of Colpodella species detection in human and animal tissues to determine whether the identification of Colpodella species represents true infections or contaminations of samples collected during routine surveillance of piroplasm infections in animals and arthropods. This review also aims to provide insights regarding Colpodella, nutrient uptake, and the survival of Colpodella sp. within humans, animals, and arthropods, as well as whether the attachment of trophozoites to cells occurs in tissues leading to myzocytosis and endocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.