Infectious diseases threaten marine populations, and the extent of their impacts is often assessed by prevalence of infection (the proportion of infected individuals). Changes in prevalence are often attributed to altered rates of transmission, although the rates of birth, recovery, and mortality also determine prevalence. The parasitic dinoflagellate Hematodinium perezi causes a severe, often fatal disease in blue crabs. It has been speculated that decreases in prevalence associated with high temperatures result from lower rates of infection. We used field collections, environmental sensor data, and high-temperature exposure experiments to investigate the factors that change prevalence of infections in blue crab megalopae (post-larvae). These megalopae migrate from offshore waters, where temperatures are moderate, to marshes where temperatures may be extremely high. Within a few days of arriving in the marsh, the megalopae metamorphose into juvenile crabs. We found a strong negative association between prevalence of Hematodinium infection in megalopae and the cumulative time water temperatures in the marsh exceeded 34°C over the preceding two days. Temperatures this high are known to be lethal for blue crabs, suggesting that higher mortality of infected megalopae could be the cause of reduced prevalence. Experimental exposure of megalopae from the marsh to a temperature of 34°C resulted in higher mortality for infected than uninfected individuals, and decreased the prevalence of infection among survivors from 18% to 3%.