Chitinase genes, as a class of cell wall hydrolases, are essential for the development and pathogenesis of Fusarium oxysporum f.sp. vasinfectum (F. ox) in cotton, but related research focused on chitinase genes are limited. This study explored two island cotton root secretions from the highly resistant cultivar Xinhai 41 and sensitive cultivar Xinhai 14 to investigate their interaction with F. ox by a weighted correlation network analysis (WGCNA). As a result, two modules that related to the fungal pathogenicity emerged. Additionally, a total of twenty-five chitinase genes were identified. Finally, host-induced gene silencing (HIGS) of FoChi20 was conducted, and the cotton plants showed noticeably milder disease with a significantly lower disease index than the control. This study illuminated that chitinase genes play crucial roles in the pathogenicity of cotton wilt fungi, and the FoChi20 gene could participate in the pathogenesis of F. ox and host–pathogen interactions, which establishes a theoretical framework for disease control in Sea Island cotton.