Background
The Tropheryma whipplei causes acute gastroenteritis to neuronal damages in Homo sapiens. Genomics and codon adaptation studies would be helpful advancements of disease evolution prediction, prevention, and treatment of disease. The codon usage data and codon usage measurement tools were deployed to detect the rare, very rare codons, and also synonymous codons usage. The higher effective number of codon usage values indicates the low codon usage bias in T. whipplei and also in the 23S and 16S ribosomal RNA genes.
Results
In T. whipplei, it was found to hold low codon biasness in genomic sets. The synonymous codons possess the base content in 3rd position that was calculated as A3S% (24.47 and 22.88), C3S% (20.99 and 22.88), T3S% (21.47 and 19.53), and G3S% (33.08 and 34.71) for 23s and 16s rRNA, respectively.
Conclusion
Amino acids like valine, aspartate, leucine, and phenylalanine hold high codon usage frequency and also found to be present in epitopes KPSYLSALSAHLNDK and FKSFNYNVAIGVRQP that were screened from proteins excinuclease ABC subunit UvrC and 3-oxoacyl-ACP reductase FabG, respectively. This method opens novel ways to determine epitope-based peptide vaccines against different pathogenic organisms.