A fully classical limit of the recently published quantum-classical approximation [A. A. Neufeld, J. Chem. Phys. 119, 2488 (2003)] is obtained and analyzed. The resulting kinetic equations are capable of describing the evolution of an open system on the entire time axis, including the short-time non-Markovian stage, and are valid beyond linear response regime. We have shown, that proceeding to the classical mechanics limit we restrict the class of allowed correlations between an open system and a canonical bath, so that the initial conditions and the relaxation operator has to be appropriately modified (projected). Disregard of the projection may lead to unphysical behavior, since mechanism of the decay of some correlations is essentially of quantum-mechanical nature, and is not correctly described by classical mechanics. The projection (quantum correction to the kinetics) is particularly important for the non-Markovian regime of relaxation towards canonical equilibrium. The conformity of the developed method to the conventional approaches is demonstrated using a model of Brownian motion (heavy particle in the bath of light ones), for which the obtained non-Markovian equations are reduced to the standard Fokker-Planck equation in phase space.