Tracer diffusivities (limiting mutual diffusion coefficients) of nonassociated aromatic compounds in n-hexane and cyclohexane have been measured at 298.2 K by Taylor's dispersion method. These new data, together with other diffusivities of nonassociated pseudoplanar solutes reported in the literature, are used to determine the separate effects of solute and solvent on tracer diffusion. The data show that for a given pseudoplanar solute diffusing in different solvents at 298.2 K, the tracer diffusivity is dependent not only on the fractional viscosity of the solvent but also on a function of the solvent's molar density, molecular mass, and free volume fraction. For different pseudoplanar aromatic solutes diffusing in a particular solvent at a constant temperature, there is a linear relationship between the reciprocal of the tracer diffusivity and the molecular volume of the solutes. The results are discussed in respect to relevant theories and experimental studies in the literature. An idealized relation, developed on the basis of the Einstein equation by incorporating the newly found solute and solvent dependences, is capable of describing a total of 176 diffusivities of nonassociated pseudoplanar solutes in various solvents at different temperatures to within an average error of ±2.8%. © 2013 AIP Publishing LLC. [http://dx