The molecular mobility of solid deuterated tert-butyl alcohol (TBA) has been studied over a broad temperature range (103–283 K) by means of solid-state 2H NMR spectroscopy, including both line shape and anisotropy of spin–lattice relaxation analyses. It has been found that, while the hydroxyl group of the TBA molecule is immobile on the 2H NMR time scale (τC > 10(–5) s), its butyl group is highly mobile. The mobility is represented by the rotation of the methyl [CD3] groups about their 3-fold axes (C3 rotational axis) and the rotation of the entire butyl [(CD3)3-C] fragment about its 3-fold axis (C3′ rotational axis). Numerical simulations of spectra line shapes reveal that the methyl groups and the butyl fragment exhibit three-site jump rotations about their symmetry axes C3 and C3′ in the temperature range of 103–133 K, with the activation energies and preexponential factors E1 = 21 ± 2 kJ/mol, k(01) = (2.6 ± 0.5) × 10(12) s(–1) and E2 = 16 ± 2 kJ/mol, k(02) = (1 ± 0.2) × 10(12) s(–1), respectively. Analysis of the anisotropy of spin–lattice relaxation has demonstrated that the reorientation mechanism of the butyl fragment changes to a free diffusion rotational mechanism above 173 K, while the rotational mechanism of the methyl groups remains the same. The values of the activation barriers for both rotations at T > 173 K have the values, which are similar to those at 103–133 K. This indicates that the interaction potential defining these motions remains unchanged. The obtained data demonstrate that the detailed analysis of both line shape and anisotropy of spin–lattice relaxation represents a powerful tool to follow the evolution of the molecular reorientation mechanisms in organic solids.