2013
DOI: 10.1063/1.4793533
|View full text |Cite
|
Sign up to set email alerts
|

Molecular dynamics simulation of inertial trapping-induced atomic scale mass transport inside single walled carbon nanotubes

Abstract: The forced transverse vibration of a single-walled carbon nanotube (SWNT) embedded with atomic-size particles was investigated using molecular dynamic simulations. The particles inside the cylindrical cantilever can be trapped near the antinodes or at the vicinity of the SWNT tip. The trapping phenomenon is highly sensitive to the external driving frequencies such that even very small changes in driving frequency can have a strong influence on the probability of the location of the particle inside the SWNT. Th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?