PACS 61.46.-w Structure of nanoscale materials PACS 68.65.-k Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties Abstract -At present, Pt nanoparticle catalysts in fuel cells suffer from aggregation and loss of chemical activity. In this work, graphdiyne, which has natural porous structure, was proposed as substrate with high adsorption ability to stabilize Pt nanoparticles. Using multiscale calculations by ab initio method and the ReaxFF potential, geometry optimizations, molecular dynamics simulations, Metropolis Monte Carlo simulations and minimum energy paths calculations were performed to investigate the adsorption energy and the rates of desorption and migration of Pt nanoparticles on graphdiyne and graphene. According to the comparison between graphdiyne and graphene, it was found that the high adsorption ability of graphdiyne can avoid Pt nanoparticle migration and aggregation on substrate. Then, simulations indicated the potential catalytic ability of graphdiyne-Pt-nanoparticle system to the oxygen reduction reaction in fuel cells. In summary, graphdiyne should be an excellent material to replace graphite or amorphous carbon matrix for stabilizing Pt nanoparticle catalysts.