Molecular dynamics simulations of single water, water-methanol, or water-IPA (isopropyl-alcohol) mixture droplets on a solid surface were performed with various mixture ratios. An increase in alcohol fraction generally gave an increase in droplet wettability. Both methanol and IPA molecules showed a strong preference to gather at various interfaces, with methanol molecules also showing a tendency to diffuse into the droplet bulk. Specific interfacial tensions were investigated using quasi-one-dimensional simulation systems, and liquid-vapor and solid-liquid interfacial tensions were found to decrease greatly due to the presence of interfacial alcohol, while solid-vapor interfacial tensions were proved to have little influence on wettability. Young's relation was found to hold quantitatively well for both water-methanol and water-IPA droplets. The validity of using Bakker's equation on solid-liquid interfaces was also investigated, and it was shown that for tightly spaced crystal surfaces, the introduced uncertainly is small.