Now a days, researchers are constantly doing efforts to upgrade the performance of solar based devices with the aim of increasing the role of photovoltaic materials in modern hi-tech optoelectronic applications. Realizing the recent energy conditions across the globe, research is diverted from fullerene to non-fullerene electron acceptor moieties in this era, considering their remarkable contribution in organic solar cells (OSCs). Therefore, we designed seven novel non-fullerene fused ring electron acceptor chromophores (MD2–MD8) from DOC2C6-2F by structural tailoring with different acceptors at end-capped units. DFT study was performed at B3LYP functional to discover the opto-electronic characteristics of the newly tailored chromophores. Various analysis such as frontier molecular orbitals (FMOs), transition density matrix (TDM), density of states (DOS), binding energy (Eb), reorganization energy, open circuit voltage (Voc) was carried out to comprehend the photovoltaic response of MD2–MD8. Decrease in band gaps (1.940–1.571 eV) with wider absorption spectrum (725.690–939.844 nm in chloroform) along with greater charge transfer rate from HOMO towards LUMO were examined in derivatives as compared to MR1 (Egap = 1.976 eV, λmax = 738.221 nm) except MD7. Further, in all derivatives, smaller values of Eb (0.252–0.279 eV) were examined than that of reference (0.296 eV). These lower binding energy values of MD2–MD8 indicated the higher rate of excitation dissociation with lager charger transfer rate than MR1, which further supported by DOS and TDM analyses. Additionally, least reorganization energy in the aforesaid compounds for hole with electron was also inspected. Moreover, Voc a good photovoltaic response was noted for all studied compounds which indicated that these compounds are suitable to synthesize OSCs in future.