Purpose
Carbapenem-resistant
Klebsiella pneumoniae
(CRKP) has seriously threatened public health worldwide. This study aimed to investigate the antimicrobial resistance patterns, sequence types (STs), virulence and carbapenemase genes of CRKP isolates from patients in Zunyi, China.
Methods
CRKP isolates were collected from the First People’s Hospital of Zunyi between January 2018 and December 2020. Antimicrobial susceptibility was determined using a VITEK
®
2 analyzer and confirmed using either the broth dilution method, Kirby–Bauer method, or E-test assays. Carbapenemase production was examined using a modified carbapenem inactivation method. STs of the studied isolates were determined by multilocus sequence typing, and the presence of carbapenemase and virulence genes was examined using polymerase chain reaction assays.
Results
In total, 94 CRKP isolates were collected. All studied isolates produced carbapenemase, and the most common carbapenemase gene was New Delhi metallo-β-lactamase (NDM; 72.3%), followed by
Klebsiella pneumoniae
carbapenemase (KPC; 24.5%), and Verona integron-encoded metallo-β-lactamase (VIM; 3.2%). Of the studied isolates, 74.3% exhibited multidrug-resistant (MDR) phenotype, and 25.7% were either pandrug-resistant (PDR) or extensively drug-resistant (XDR) phenotypes. The most prevalent sequence type was ST2407 (37.2%), followed by ST76 (21.3%) and ST11 (11.7%). The NDM gene was present in 97.1% of ST2407 isolates and 90.0% of ST76 isolates, whereas the KPC gene was present in 90.9% of ST11 isolates. The majority of the isolates carried
wabG, uge
, and
fimH
virulence genes, with prevalence rates of 94.7%, 92.6%, and 94.7%, respectively.
Conclusion
This study describes NDM-producing ST2407 and ST76, as well as KPC-producing ST11, as the major clonal types of CRKP isolates in Zunyi, China. All CRKP isolates were resistant to multiple types of antibiotics, and the majority of isolates carried carbapenemase and virulence genes. Clonal spread of NDM-producing CRKP ST2407 and ST76, and KPC-producing CRKP ST11 should be strictly monitored.