Osmotic pressure provided by salty wastewaters is an important influencing factor for alginate-like exopolysaccharides (ALE) in aerobic granular sludge (AGS). Therefore, research on the influence of salinity (NaCl 0 R1, 10 g/L R2, 30 g/L R3) on AGS and its ALE formation was conducted. A salinity of 1% induced larger particle size with smooth spheroidal shape and enhanced granular strength in R2. The TOC and ammonia removal were unaffected in both R2 and R3, but the P removal was greatly enhanced. ALE was much enriched at moderate salinity (1% NaCl). The amount of ALE reached 49.8 mg/g VSS at 140 d in R2, which was much higher than in R1 (26.8 mg/g VSS) and R3 (28.9 mg/g VSS), possibly due to the activation of gene algC expression in AGS of R2. ALE also showed the largest GG block fractionation and MW in R2, which indicated the greatest enhancement of mechanical properties. Moreover, enrichment of glucosamine, lipid content, and octadecanamide derivative in ALE of R2 endowed it with medicinal potential, stronger water-barrier property, and reduction of the products’ friction coefficients, respectively. Therefore, AGS based on ALE is a potential technology for treatment of salty wastewater.