Skeletal muscle is a highly heritable quantitative trait, with heritability estimates ranging 30 -85 % for muscle strength and 50 -80 % for lean mass. That strong genetic contribution indicates the possibility of using genetic information to individualize treatments for sarcopenia or even aid in prevention strategies through the use of genetic screening prior to the functional limitations. Though these possibilities provide the rationale for genetic studies of skeletal muscle traits, few genes have been identified that appear to contribute to variation in either skeletal muscle strength or mass phenotypes, and sarcopenia per se is remarkably understudied as a trait in this regard. This review examines the heritability of skeletal muscle traits, findings of linkage and genome-wide association analyses and impact of specific genes and gene-sequence variants on these traits as relevant to sarcopenia. Despite considerable work in the area, the genetic underpinnings of skeletal muscle traits remain largely unknown and the genetic aspects of sarcopenia are even less clear. Large-scale longitudinal clinical studies relying on advanced genome-wide association and other techniques are needed to provide further insights into the genes and gene variants that contribute to skeletal muscle strength and mass, and ultimately to susceptibility to sarcopenia.