The cerebellum expresses one of the highest levels of the plasma membrane Ca 2+ ATPase, isoform 2 in the mammalian brain. This highly efficient plasma membrane calcium transporter protein is enriched within the main output neurons of the cerebellar cortex; i.e. the Purkinje neurons (PNs). Here we review recent evidence, including electrophysiological and calcium imaging approaches using the plasma membrane calcium ATPase 2 (PMCA2) knockout mouse, to show that PMCA2 is critical for the physiological control of calcium at cerebellar synapses and cerebellar dependent behaviour. These studies have also revealed that deletion of PMCA2 throughout cerebellar development in the PMCA2 knockout mouse leads to permanent signalling and morphological alterations in the PN dendrites. Whilst these findings highlight the importance of PMCA2 during cerebellar synapse function and development, they also reveal some limitations in the use of the PMCA2 knockout mouse and the need for additional experimental approaches including cell-specific and reversible manipulation of PMCAs.
THE CEREBELLUM, THE PURKINJE NEURON AND THE IMPORTANCE OF CALCIUM DYNAMICS AT CEREBELLAR SYNAPSESThe cerebellum is a major centre for the integration of sensory and motor information in the brain and plays a central role in our ability to learn and refine motor tasks; the specialised function of the cerebellum allows us to execute motor tasks in a finely controlled but, at the same time, "unaware" manner that can still be improved by learning. For a detailed review of cerebellar function
TOPIC HIGHLIGHTWorld J Biol Chem 2010 May 26; 1(5): 95-102 ISSN 1949-8454 (online)